4. 0. M. Lavrent'eva, "The motion of a fluid ellipsoid," Dok1. Akad. Nauk SSSR, 253, No. 4 (1980).

EXACT SOLUTION OF THE THREE-DIMENSIONAL PROBLEM OF IDEAL PLASTICITY
S. I. Senashov

UDC 539.374

Let $r \theta z$ be a cylindrical coordinate system, $\sigma_{r}, \sigma_{\theta}, \sigma_{z}, \tau_{r} \theta,{ }^{\tau} r z,{ }^{\tau} \theta_{z}$ be the components of the stress tensor, $u, v$, and $w$ he the components of the velocity vector, and $k$ be the yield stress under pure shear.

The equations of ideal plasticity with the von Mises yield condition are of the form

$$
\begin{gather*}
\frac{\partial \sigma_{r}}{\partial r}+\frac{1}{r} \frac{\partial \tau_{r \theta}}{\partial \theta}+\frac{\partial \tau_{r z}}{\partial z}+\frac{\sigma_{r}-\sigma_{\theta}}{r}=0, \\
\frac{\partial \tau_{r \theta}}{\partial r}+\frac{1}{r} \frac{\partial \sigma_{\theta}}{\partial 0}+\frac{\partial \tau_{\theta z}}{\partial z}+\frac{2 \tau_{r \theta}}{r}=0, \\
\frac{\partial \tau_{r z}}{\partial r}+\frac{1}{r} \frac{\partial \tau_{\theta z}}{\partial \theta}+\frac{\partial \sigma_{z}}{\partial z}+\frac{\tau_{r z}}{r}=0, \\
\left(\sigma_{r}-\sigma_{\theta}\right)^{2}+\left(\sigma_{\theta}-\sigma_{z}\right)^{2}+\left(\sigma_{z}-\sigma_{r}\right)^{2}+6\left(\tau_{r \theta}^{2}+\tau_{r z}^{2}+\tau_{\theta z}^{2}\right)=6 k^{2},  \tag{1}\\
\lambda \frac{\partial u}{\partial r}=2 \sigma_{r}-\sigma_{\theta}-\sigma_{z}, \quad \lambda\left(\frac{u}{r}+\frac{1}{r} \frac{\partial v}{\partial \theta}\right)=2 \sigma_{\theta}-\sigma_{z}-\sigma_{r}, \\
\lambda \frac{\partial w}{\partial z}=2 \sigma_{z}-\sigma_{r}-\sigma_{\theta}, \quad \lambda\left(\frac{1}{r} \frac{\partial w}{\partial \theta}+\frac{\partial v}{\partial z}\right)=2 \tau_{\theta z}, \\
\lambda\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial r}\right)=2 \tau_{r z}, \quad \lambda\left(r \frac{\partial}{\partial r}\left(\frac{v}{r}\right)+\frac{1}{r} \frac{\partial u}{\partial \theta}\right)=2 \tau_{r \theta}, \\
\frac{\partial}{\partial r}(r u)+\frac{\partial v}{\partial \theta}+r \frac{\partial w}{\partial z}=0, \\
\sigma_{r}+\sigma_{\theta}+\sigma_{z}=3 p .
\end{gather*}
$$

We shall assume that

$$
\begin{equation*}
\tau_{r z}=\tau_{r \theta}=0 . \tag{2}
\end{equation*}
$$

We shall seek the solution of Eqs. (1) in the form

$$
\begin{equation*}
u=u^{*}(r) \operatorname{sh} \xi, v=v^{*}(r) \operatorname{ch} \xi, w=w^{*}(r) \operatorname{ch} \xi, p=p(r), \xi=z+\beta \theta \tag{3}
\end{equation*}
$$

where $u^{*}, \mathrm{~V}^{*}, \mathrm{w}^{*}$ are functions only of r and $\beta$ is an arbitrary constant. Then we obtain from the incompressibility condition and Eqs. (2) a system of ordinary differential equations for determination of the functions $u^{*}, v^{*}, W^{*}:$

$$
\begin{equation*}
u^{*}+\frac{d w^{*}}{d r}=0, \quad r \frac{d}{d r}\left(\frac{v^{*}}{r}\right)+\frac{\beta}{r} u^{*}=0, \quad \frac{d}{d r}\left(r u^{*}\right)+\beta v^{*}+r w^{*}=0 \tag{4}
\end{equation*}
$$

and the equation

$$
\begin{equation*}
d \sigma_{r} / d r+\left(\sigma_{r}-\sigma_{\theta}\right) / r=0 \tag{5}
\end{equation*}
$$

remains for the determination of the pressure $p$. The system of equations (4) reduces to the Bessel equation

$$
r^{2} u^{*^{\prime \prime}}+r u^{* \prime}-\left(r^{2}+\beta^{2}+1\right) u^{*}=0
$$

The solution of this equation is of the form

$$
\begin{equation*}
u^{*}=C_{1} I_{v}(r)+C_{2} K_{v}(r), v=\sqrt{\beta^{2}+1} \tag{6}
\end{equation*}
$$

where $I_{\nu}$ are the Bessel functions of imaginary argument, $K_{\nu}$ is the MacDonald function, and $C_{1}$ and $C_{2}$ are arbitrary constants. If one sets $C_{2}=0$ in (6), the velocity field is of the form

Krasnoyarsk, Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 153-155, July-August, 1984. Original article submitted November 22, 1983.

$$
\begin{gather*}
u=C_{1} I_{v}(r) \operatorname{sh} \xi  \tag{7}\\
v=-\left[r C_{1} \beta \int I_{v}(r) \frac{d r}{r^{2}}\right] \operatorname{ch} \xi, \quad w=-C_{1} \operatorname{ch} \xi \int I_{v}(r) d r
\end{gather*}
$$

The components of the stress tensor are equal to

$$
\begin{aligned}
& \sigma_{\tau}=C+\int \frac{F(\varphi-1)}{r} d r, \quad \tau_{\theta z}=\psi F, \\
& \sigma_{\theta}=\sigma_{r}+(\varphi-1) F, \sigma_{z}=\sigma_{r}-(2+\varphi) F, F=\sqrt{2} h\left(1+\varphi^{2}+(1+\varphi)^{2}+\right. \\
& \left.+(1 / 2) \psi^{2}\right)^{-1 / 2}, \\
& \varphi=\left(u^{*}+\beta v^{*}\right) / r u^{*^{\prime}}, \psi=\left(\beta w^{*}+r v^{*}\right) / r u^{*^{\prime}} .
\end{aligned}
$$

One can use the solution (7) and (8) to describe the plastic flow of a cylinder ( $0<r \leqslant R$, $-Z \leqslant z \leqslant \eta$ ), loaded at the ends by a stress distribution according to the law

$$
\sigma_{z}=-(2+\varphi) F+\int_{0}^{r} \frac{F(\varphi-1)}{r} d r
$$

and by the torsional moment

$$
M=2 \pi \int_{0}^{R} \tau_{\theta z} r^{2} d r
$$

Assuming the lateral surface to be free of stresses, we determine the constant $C$ from the condition $\sigma_{r}(R)=0$.

If $C_{2} \neq 0$ in formula (6), one can use the solution constructed to describe the plastic flow of a tube acted on by tensile stresses, a torsional moment, and internal pressure.

If one sets $\beta=0$ in formulas (8), the components of the stress tensor will coincide with those found in [1] for the case of axisymmetric strain.

One can also use the solution found to describe the flow of a plastically nonuniform medium; for this it is sufficient to set $k=K(r)$ in formulas (1) and (8).

LITERATURE CITED

1. B. D. Annin, Contemporary Models of Plastic Bodies [in Russian], NGU, Novosibirsk (1975).
