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EXACT SOLUTION OF THE THREE-DIMENSIONAL PROBLEM OF IDEAL PLASTICITY 

S. I. Senashov UDC 539. 374 

Let r@z be a cylindrical coordinate system, a r, o'@, 
of the stress tensor, u, v, and w be the components of the velocity vector, and k be the 
yield stress under pure shear. 

The equations of ideal plasticity with the von Mises yield condition are of the form 

a~r I a~rO a~rz  (rr--% 
a-7 + T ~ -  + -~T -F 7 = o ,  

rJ'rrO I a% o't: O. q 2~rO 
___ i _ _  ) ~ ~ --0) 
d r - V  r "O'TJ-w--'O'~-~ " '- r - -  

{)'Crz , i O'rOz , OOz , "rrz 
--g7 + -7- --g-O- ~- --~- T ~ = O,, 

2 

/ u '1 OvX 
o.. z I V -  + V -  ~ )  2% - ~ -  o,, ~" -~r  = 2% - -  % - -  o z, - -  

O. ( t aw av ) 
~'~z =2Zz--C~r--% ' ~" -7"'00" +'~'z =2xOz' 

(o(§ 
;t "~z-F' --Or =2"~rz, L r ~  -Jr---r ~ =2"l:rO' 

a 6V Ow 
O r  (ru) + ~ + r T ;  = o, 

o r q- % ~ (r z = 3p. 

o z, TrB, Trz, Tez be the components 
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We shall assume that 

T,z = ~ro = O. ( 2 )  

We shall seek the solution of Eqs. (i) in the form 

u = u*(r)sh ~, v = v*(r)ch ~, w = w * ( S &  ~, p = p(O,  ~ = z + ~0, ( 3 )  

where u*, v*, w* are functions only of r and B is an arbitrary constant. Then we obtain from 
the incompressibility condition and Eqs. (2) a system of ordinary differential equations for 

determination of the functions u*, v*, w*: 

u * + - ~ - - r  = 0 ,  r--~r + - - ~ * = 0 ,  "~r ( r . * )+~v*Wrw*=O,  (4) 

and the equation 

d%/dr + (% -- %)Ir = 0 (5) 

remains for the determination of the pressure p. The system of equations (4) reduces to the 

Bessel equation 
~ u * " +  ru*' - -  ( ~  + ~ + l )u*  = O. 

The solution of this equation is of the form 

u* = C~[~(r) + G K ~ ( O ,  ~ = 1 / ~  2 + L ( 6 )  

where Iv are the Bessel functions of imaginary argument, K~ is the MacDonald function, and 
CI and C2 are arbitrary constants. If one sets C2 = 0 in (6), the velocity field is of the 

form 
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tt = Cll~(r)sh ~, 

v = - -  rC113 I v ( r ) - ' 7  ch~, w = - - C  lch~ I~(r)  dr. 

(7) 

The components of the stress tensor are equal to 
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(8) 

One can use the solution (7) and (8) to describe the plastic flow of a cylinder (0 < r < R, 
--l < z < 1), loaded at the ends by a stress distribution according to the law 

~= - (2+ ~) F + ~F (~/-- t) dr, 
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and by the torsional moment 
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M =  2nJ'Tozr2dr. 
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Assuming the lateral surface to be free of stresses, we determine the constant C from the 

condition Or(R) = 0. 

If C2 r 0 in formula (6), one can use the-solution constructed to describe the plastic 
flow of a tube acted on by tensile stresses, a torsional moment, and internal pressure. 

If one sets B = 0 in formulas (8), the components of the stress tensor will coincide 

with those found in [i] for the case of axisymmetric strain. 

One can also use the solution found to describe the flow of a plastically nonuniform 

medium; for this it is sufficient to set k = K(r) in formulas (i) and (8). 
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